Borophene-like Boron Subunits-inserted Molybdenum Framework of MoB2 Enables Stable and Quick-acting Li2S6-based Lithium-sulfur Batteries

2020 
Abstract High-performance lithium-sulfur batteries are limited by the severe “shuttle effect” of polysulfide migration. To entrap and immobilize polysulfides, the development of catalytic material is an effective strategy for improving the lithium-sulfur batteries. Herein, we demonstrate that borophene-like boron subunits-inserted molybdenum frameworks of molybdenum diboride (MoB2) serves as a polysulfide-anchoring center to power redox reaction processing under the high-efficient electron transfer conditions. Specifically, MoB2 not only offers active sites to anchor polysulfide via covalent B-B and metallic Mo-Mo bonds-based low lithiation structure, but also provides a high conductivity to accelerate polysulfide conversion kinetics. With these advances, the liquid Li2S6-based MoB2 electrode (area: 2 cm2) offers a high initial capacity of 1116 mAh/g, and holds 558 mAh/g at 2 C after 500 cycles. Furthermore, the currently proposed MoB2 catalyst may significantly propel the advancement of electrocatalysis technology from lithium-sulfur batteries to metal-air batteries and carbon dioxide/nitrogen electrochemical reduction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    11
    Citations
    NaN
    KQI
    []