Matrix Metalloproteinases-3, -7, and -12, but Not -9, Reduce High Density Lipoprotein-induced Cholesterol Efflux from Human Macrophage Foam Cells by Truncation of the Carboxyl Terminus of Apolipoprotein A-I PARALLEL LOSSES OF PRE-β PARTICLES AND THE HIGH AFFINITY COMPONENT OF EFFLUX

1999 
Abstract Matrix metalloproteinases (MMPs) have been suggested to function in remodeling of the arterial wall, but no information is available on their possible role in early atherogenesis, when cholesterol accumulates in the cells of the arterial intima, forming foam cells. Here, we incubated the major component responsible for efflux of cholesterol from foam cells, high density lipoprotein 3 (HDL3), with MMP-1, -3, -7, -9, or -12 at 37 °C before adding it to cholesterol-loaded human monocyte-derived macrophages. After incubation with MMP-3, -7, or -12, the ability of HDL3 to induce the high affinity component of cholesterol efflux from the macrophage foam cells was strongly reduced, whereas preincubation with MMP-1 reduced cholesterol efflux only slightly and preincubation with MMP-9 had no effect. These differential effects of the various MMPs were reflected in their differential abilities to degrade the small pre-β migrating particles present in the HDL3 fraction. NH2-terminal sequence and mass spectrometric analyses of the apolipoprotein (apo) A-I fragments generated by MMPs revealed that those MMPs that strongly reduced cholesterol efflux (MMPs-3, -7, and -12) cleaved the COOH-terminal region of apoA-I and produced a major fragment of about 22 kDa, whereas MMPs-1 and -9, which had little and no effect on cholesterol efflux, degraded apoA-I only slightly and not at all, respectively. These results show, for the first time, that some members of the MMP family can degrade the apoA-I of HDL3, so blocking cholesterol efflux from macrophage foam cells. This expansion of the substrate repertoire of MMPs to include apoA suggests that these proteinases are directly involved in the accumulation of cholesterol in atherosclerotic lesions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    57
    Citations
    NaN
    KQI
    []