Security-enrichment of an asymmetric optical image encryption-based devil’s vortex Fresnel lens phase mask and lower upper decomposition with partial pivoting in gyrator transform domain

2021 
An asymmetric optical cryptosystem to encrypt images using devil’s vortex Fresnel lens (DVFLs) phase masks and lower upper decomposition with partial pivoting (LUDPP) is proposed in gyrator transform domain. The proposed cryptosystem utilizes DVFLs which are the complex phase masks designed using the combination of a phases of devil’s lens, vortex lens, and Fresnel lens. LUDPP is an operation used to decompose the matrix and is utilized to supersede the phase-truncation task in the traditional phase-truncated Fourier transform (PTFT). Hence, the proposed method is immune to the attacks to which the PTFT-based cryptosystems are vulnerable. The cryptosystem is asymmetric as both the encryption and decryption processes are different along with different keys. The private keys generated during the encryption process are utilised in the decryption process to retrieve the original image. The encryption and decryption process can be realised with both the digital and the modified optical architecture. In order to show the strength and robustness of the proposed encryption, a conspire numerical simulation was performed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    3
    Citations
    NaN
    KQI
    []