Electrophysiological signatures predict clinical outcomes after deep brain stimulation of the globus pallidus internus in Meige syndrome.

2021 
Objective Deep brain stimulation (DBS) of the globus pallidus internus (GPi) has been shown to be a safe and effective alternative therapy for ameliorating medically refractory primary Meige syndrome. However, the associations between DBS target position and surrounding electrophysiological properties as well as patients' clinical outcomes remains largely unknown. In a large number of patients, we investigated electrophysiological features around stimulation targets and explored their roles in predicting clinical outcomes following bilateral GPi-DBS. Methods The locations of DBS active contacts along the long axis of the GPi in a standard space were calculated and compared among three groups with different clinical outcomes. The firing rates of individual neurons around active DBS locations were calculated for each patient and compared across the three groups. Results Compared with the bad group (poor clinical outcome), active contacts in the good group (good clinical outcome) and the best group (best clinical outcome) were located in the more posterior GPi. The average firing rates in the good and best groups were significantly higher than in the bad group, and this difference was pronounced within the ventral GPi. For the bad group, the average firing rates were significantly lower in the ventral than in the dorsal GPi. Conclusions This study suggests that DBS of the posterior GPi may produce better clinical outcomes during primary Meige syndrome treatment and that higher GPi neuronal activity, particularly within the ventral part, can be used as a biomarker to guide DBS electrode implantation during surgery.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []