Enhanced activity and stability of MoS2 through enriching 1T-phase by covalent functionalization for energy conversion applications

2021 
Abstract The selective enrichment of a highly active form/phase of material is essential for the development of potential candidates for specific applications. Herein, we demonstrate the first example of the covalent functionalization of a highly active 1T phase of outstanding 2D material, such as MoS2, and its enrichment (> 94%) using a solvent extraction technique. Covalent functionalization stabilizes the metastable 1T phase with increased interlayer distance, which makes it a more suitable candidate for energy applications. The enriched functionalized 1T-MoS2 with n-butyl groups (en-Bu-1T-MoS2) shows a lower overpotential of 169 mV (vs. Reversible Hydrogen Electrode, RHE) with the loading mass of 0.9 mg cm−2 toward the hydrogen evolution reaction (HER). The continuous HER of en-Bu-1T-MoS2-based electrode for >200 h showed only
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    17
    Citations
    NaN
    KQI
    []