Service life and global warming potential of chloride exposed concrete with high volumes of fly ash

2017 
Abstract Today, it remains unclear how ‘green’ concrete with high volumes of fly ash really is, especially when subject to chloride-induced corrosion. This paper presents chloride diffusion test results for high-volume fly ash and fly ash + silica fume concrete. Apparent diffusion coefficients and surface concentrations were compared with those for traditional concrete. Instantaneous chloride diffusion coefficients and ageing exponents were estimated and critical chloride contents for submerged exposure conditions were experimentally verified. The estimated time to chloride-induced steel depassivation for the two concrete types with fly ash (60 to more than 100 years) was much longer than for traditional concrete (24–32 years). As a consequence, global warming potentials (GWPs) calculated for the required concrete volume per unit of strength and service life indicate that an important reduction in greenhouse gas emissions is possible for both concrete types with high volumes of fly ash (GWP –50 to −82%).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    22
    Citations
    NaN
    KQI
    []