Transport properties of variously doped SmB6

2016 
AbstractSmB6 is a heavy fermion semiconductor with a narrow energy gap at the Fermi level, often denoted also as Kondo insulator, which has recently been considered to be a topological Kondo insulator, the first strongly correlated electron system to exhibit topological surface conduction states. In this contribution we have investigated the electrical transport properties of single crystalline SmB6 samples having various surfaces, of single crystalline SmB6 doped with various concentrations of lanthanum, europium, ytterbium and strontium, and of samarium deficient (i.e. doped with metal vacancies) Sm1-xB6 sintered samples with the aim to study the influence of miscellaneous doping and sample surfaces on the electronic states in the narrow energy gap of this material. The received results show rather complex resistivity vs. temperature ρ(T) and resistance vs. magnetic field ρ(H) behaviours as a function of wide range La doping and as a function of doping with different elements and vacancies. These result...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    11
    Citations
    NaN
    KQI
    []