Cell-Cycle Gene Alterations in 4,864 Tumors Analyzed by Next-Generation Sequencing: Implications for Targeted Therapeutics.

2016 
Alterations in the cyclin-dependent kinase (CDK)-retinoblastoma (RB) machinery disrupt cell-cycle regulation and are being targeted in drug development. To understand the cancer types impacted by this pathway, we analyzed frequency of abnormalities in key cell-cycle genes across 4,864 tumors using next-generation sequencing (182 or 236 genes; Clinical Laboratory Improvement Amendments laboratory). Aberrations in the cell-cycle pathway were identified in 39% of cancers, making this pathway one of the most commonly altered in cancer. The frequency of aberrations was as follows: CDKN2A/B (20.1% of all patients), RB1 (7.6%), CCND1 (6.1%), CCNE1 (3.6%), CDK4 (3.2%), CCND3 (1.8%), CCND2 (1.7%), and CDK6 (1.7%). Rates and types of aberrant cell-cycle pathway genes differed between cancer types and within histologies. Analysis of coexisting and mutually exclusive genetic aberrations showed that CCND1, CCND2 , and CCND3 aberrations were all positively associated with CDK 6 aberrations [OR and P values, multivariate analysis: CCND1 and CDK6 (OR = 3.5; P CCND2 and CDK6 (OR = 4.3; P = 0.003), CCND3 and CDK6 (OR = 3.6; P = 0.007)]. In contrast, RB1 alterations were negatively associated with multiple gene anomalies in the cell-cycle pathway, including CCND1 (OR = 0.25; P = 0.003), CKD4 (OR = 0.10; P = 0.001), and CDKN2A/B (OR = 0.21; P Mol Cancer Ther; 15(7); 1682–90. ©2016 AACR .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    18
    Citations
    NaN
    KQI
    []