Global profiling of plant nuclear membrane proteome in Arabidopsis

2020 
The nuclear envelope (NE) is structurally and functionally vital for eukaryotic cells, yet its protein constituents and their functions are poorly understood in plants. Here, we combined subtractive proteomics and proximity-labelling technology coupled with quantitative mass spectrometry to understand the landscape of NE membrane proteins in Arabidopsis. We identified ~200 potential candidates for plant NE transmembrane (PNET) proteins, which unravelled the compositional diversity and uniqueness of the plant NE. One of the candidates, named PNET1, is a homologue of human TMEM209, a critical driver for lung cancer. A functional investigation revealed that PNET1 is a bona fide nucleoporin in plants. It displays both physical and genetic interactions with the nuclear pore complex (NPC) and is essential for embryo development and reproduction in different NPC contexts. Our study substantially enlarges the plant NE proteome and sheds new light on the membrane composition and function of the NPC. The nuclear envelope (NE) separates the nucleoplasm from the cytoplasm in all eukaryotic cells. The plant NE displays a similar structure but different protein compositions compared with the animal NE. Here the researchers identify ~200 protein candidates that reside in the NE of Arabidopsis cells. Among the candidates, they characterize a critical protein that is associated with the nuclear pore complex.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    21
    Citations
    NaN
    KQI
    []