H2O and CO2 in minerals of the haüyne-sodalite group: an FTIR spectroscopy study

2009 
This paper reports an infrared spectroscopic study of a set of sodalite-group minerals. The specimens have been identified using a combination of X-ray diffraction and microchemical analysis. As expected, the Si/Al ratio is ∼1; the extra framework cation content is characterized by a well-defined Na ⇌ (Ca+K) substitution. The lattice parameters of the studied samples range from sodalite (sample LM11) with a = 8.889(2) A, to hauyne (sample HR3S) with a = 9.1265(2) A. The specimens, having the \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{SO}_{4}^{2-}\) \end{document} group as a dominant anion, show a clear correlation between the a cell edge and the K content. Single-crystal FTIR spectroscopy shows that hauyne and nosean typically contain enclathrated CO2 molecules, in addition to H2O and minor carbonate, while sodalite is virtually CO2-free. Detailed microspectrometric mappings show a non-homogeneous distribution of volatile constituents across the crystals, which may be related to the presence of fractures in the crystals. Because of such zoning, a relatively wide variation is observed when calibrating extinction coefficients on the basis of a bulk analytical method such as CHN elemental analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    20
    Citations
    NaN
    KQI
    []