OPC verification on cell level using fully rigorous mask topography simulation
2007
Starting with the 45nm node, the minimum feature size on the mask has reached sub-wavelength dimension. In this
regime the electromagnetic field induced in the mask is significantly impacted by the mask topography. These so called
mask topography effects play an important role in the image formation process and need to be compensated for in the
optical proximity correction (OPC) model. Looking ahead to the 32nm process node, mask topography effects will
become even more pronounced. So, including these effects into the OPC model has become a must for advanced process
nodes. Modern OPC engines start to apply electromagnetic field (EMF) compensation techniques to take these effects
into account. Of course, due to the severe run time constrains for OPC models most EMF aware OPC models need to
rely on approximate methods. A reliable OPC verification process needs to include a fully rigorous treatment of the mask
topography effects with taking into account oblique light incidence and polarization of light. In this paper we investigate
the impact of rigorous mask topography simulation on the reliability of OPC verification and determine the influence of
EMF aware OPC models on OPC quality. We use lithography simulations on OPCed layout cells where we apply a fully
rigorous parallelized EMF solver to the mask model. Two different OPC models are used in this study; one based on the
conventional approach and another one using EMF compensation techniques. The results of the rigorous lithography
simulations are used to verify both OPC models. The impact of the EMF simulation on OPC verification quality is
illustrated by direct comparison with the corresponding Kirchhoff simulations for both OPC models.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
10
References
5
Citations
NaN
KQI