New Nearly-Optimal Coreset for Kernel Density Estimation

2020 
Given a point set $P\subset \mathbb{R}^d$, kernel density estimation for Gaussian kernel is defined as $\overline{\mathcal{G}}_P(x) = \frac{1}{\left|P\right|}\sum_{p\in P}e^{-\left\lVert x-p \right\rVert^2}$ for any $x\in\mathbb{R}^d$. We study how to construct a small subset $Q$ of $P$ such that the kernel density estimation of $P$ can be approximated by the kernel density estimation of $Q$. This subset $Q$ is called \emph{coreset}. The primary technique in this work is to construct $\pm 1$ coloring on the point set $P$ by the discrepancy theory and apply this coloring algorithm recursively. Our result leverages Banaszczyk's Theorem. When $d>1$ is constant, our construction gives a coreset of size $O\left(\frac{1}{\varepsilon}\sqrt{\log\log\frac{1}{\varepsilon}}\right)$ as opposed to the best-known result of $O\left(\frac{1}{\varepsilon}\sqrt{\log\frac{1}{\varepsilon}}\right)$. It is the first to give a breakthrough on the barrier of $\sqrt{\log}$ factor even when $d=2$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    1
    Citations
    NaN
    KQI
    []