Rank-preserving biclustering algorithm: a case study on miRNA breast cancer.

2021 
Effective biomarkers aid in the early diagnosis and monitoring of breast cancer and thus play an important role in the treatment of patients suffering from the disease. Growing evidence indicates that alteration of expression levels of miRNA is one of the principal causes of cancer. We analyze breast cancer miRNA data to discover a list of biclusters as well as breast cancer miRNA biomarkers which can help to understand better this critical disease and take important clinical decisions for treatment and diagnosis. In this paper, we propose a pattern-based parallel biclustering algorithm termed Rank-Preserving Biclustering (RPBic). The key strategy is to identify rank-preserved rows under a subset of columns based on a modified version of all substrings common subsequence (ALCS) framework. To illustrate the effectiveness of the RPBic algorithm, we consider synthetic datasets and show that RPBic outperforms relevant biclustering algorithms in terms of relevance and recovery. For breast cancer data, we identify 68 biclusters and establish that they have strong clinical characteristics among the samples. The differentially co-expressed miRNAs are found to be involved in KEGG cancer related pathways. Moreover, we identify frequency-based biomarkers (hsa-miR-410, hsa-miR-483-5p) and network-based biomarkers (hsa-miR-454, hsa-miR-137) which we validate to have strong connectivity with breast cancer. The source code and the datasets used can be found at http://agnigarh.tezu.ernet.in/~rosy8/Bioinformatics_RPBic_Data.rar .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []