Controlling attosecond electron dynamics by phase-stabilized polarization gating

2006 
Top of page Attosecond electron wavepackets are produced when an intense laser field ionizes an atom or a molecule1. When the laser field drives the wavepackets back to the parent ion, they interfere with the bound wavefunction, producing coherent subfemtosecond extreme-ultraviolet light bursts. When only a single return is possible2, 3, an isolated attosecond pulse is generated. Here we demonstrate that by modulating the polarization of a carrier-envelope phase-stabilized short laser pulse4, we can finely control the electron-wavepacket dynamics. We use high-order harmonic generation to probe these dynamics. Under optimized conditions, we observe the signature of a single return of the electron wavepacket over a large range of energies. This temporally confines the extreme-ultraviolet emission to an isolated attosecond pulse with a broad and tunable bandwidth. Our approach is very general, and extends the bandwidth of attosecond isolated pulses in such a way that pulses of a few attoseconds seem achievable. Similar temporal resolution could also be achieved by directly using the broadband electron wavepacket. This opens up a new regime for time-resolved tomography of atomic or molecular wavefunctions5, 6 and ultrafast dynamics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    324
    Citations
    NaN
    KQI
    []