Fractional Kirchhoff problem with critical indefinite nonlinearity

2018 
We study the existence and multiplicity of positive solutions for a family of fractional Kirchhoff equations with critical nonlinearity of the form \begin{equation*} M\left(\int_\Omega|(-\Delta)^{\frac{\alpha}{2}}u|^2dx\right)(-\Delta)^{\alpha} u= \lambda f(x)|u|^{q-2}u+|u|^{2^*_\alpha-2}u\;\; \text{in}\; \Omega,\;u=0\;\textrm{in}\;\mathbb R^n\setminus \Omega, \end{equation*} where $\Omega\subset \mathbb R^n$ is a smooth bounded domain, $ M(t)=a+\varepsilon t, \; a, \; \varepsilon>0,\; 0<\alpha<1, \; 2\alphaNehari manifold technique, we combine effects of a sublinear and a superlinear term to prove our main results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    2
    Citations
    NaN
    KQI
    []