The effects of macroscopic inhomogeneities on the magnetotransport properties of the electron gas in two dimensions

2004 
Abstract In experiments on electron transport, the macroscopic inhomogeneities in the sample play a fundamental role. In this paper and a subsequent one, we introduce and develop a general formalism that captures the principal features of sample inhomogeneities ( density gradients, contact misalignments ) in the magnetoresistance data taken from low-mobility heterostructures. We present detailed assessments and experimental investigations of the different regimes of physical interest, notably the regime of semiclassical transport at weak magnetic fields, the plateau–plateau transitions as well as the plateau–insulator transition that generally occurs at much stronger values of the external field only. It is shown that the semiclassical regime at weak fields plays an integral role in the general understanding of the experiments on the quantum Hall regime. The results of this paper clearly indicate that the plateau–plateau transitions, unlike the plateau–insulator transition, are fundamentally affected by the presence of sample inhomogeneities. We propose a universal scaling result for the magnetoresistance parameters. This result facilitates, amongst many other things, a detailed understanding of the difficulties associated with the experimental methodology of H.P. Wei et al. in extracting the quantum critical behavior of the electron gas from the transport measurements conducted on the plateau–plateau transitions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    18
    Citations
    NaN
    KQI
    []