Learning and flexibility for water supply infrastructure planning under groundwater resource uncertainty

2019 
Abstract Water supply infrastructure planning in groundwater-dependent regions is often challenged by uncertainty in future groundwater resource availability. Many major aquifer systems face long-term water table decline due to unsustainable withdrawals. However, many regions, especially those in the developing world, have a scarcity of groundwater data. This creates large uncertainties in groundwater resource predictions and decisions about whether to develop alternative supply sources. Developing infrastructure too soon can lead to unnecessary and expensive irreversible investments, but waiting too long can threaten water supply reliability. This study develops an adaptive infrastructure planning framework that applies Bayesian learning on groundwater observations to assess opportunities to learn about groundwater availability in the future and adapt infrastructure plans. This approach allows planners in data scarce regions to assess under what conditions a flexible infrastructure planning approach, in which initial plans are made but infrastructure development is deferred, can mitigate the risk of overbuilding infrastructure while maintaining water supply reliability in the face of uncertainty. This framework connects engineering options analysis from infrastructure planning to groundwater resources modeling. We demonstrate a proof-of-concept on a desalination planning case for the city of Riyadh, Saudi Arabia, where poor characterization of a fossil aquifer creates uncertainty in how long current groundwater resources can reliably supply demand. We find that a flexible planning approach reduces the risk of over-building infrastructure compared to a traditional static planning approach by 40% with minimal reliability risk (
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []