Ultrasonic-assisted reduction for facile synthesis of ultrafine supported Pd nanocatalysts by hydroxyl groups on the surfaces of layered double hydroxides and their catalytic properties

2020 
Abstract Layered double hydroxide (LDH)-supported Pd nanocatalysts (Pd/LDH-OH) were prepared by ultrasonic-assisted reduction at 30 °C using an ultrasonic bath at a frequency of 25 kHz and an input power of 400 W for 30 min without the addition of any stabilizing reagent or chemical reductant, using LDH with a layered structure and interparticle mesoporosity as the reductant and carrier. This kind of pore structure allows ultrasound waves to spread inside the pore and make ultrasound directly act on the surface hydroxyl groups of LDH, producing highly reductive free radicals ( H). The reductive free radicals rapidly reduced Pd2+ to Pd0, forming ultrafine Pd nanoparticles (PdNPs) with a particle size distribution of 1.85 nm–3.45 nm and an average particle size of 2.52 nm. The surface hydroxyl groups were converted to exposed oxygen groups after dissociation of hydrogen radicals, which is beneficial for anchoring and dispersing the resultant PdNPs. The resultant PdNPs were uniformly dispersed on the surface of the LDH carrier. The yield of the Suzuki coupling reaction between 4-bromotoluene and phenylboronic acid catalyzed by Pd/LDH-OH at 60 °C was 95.49% for 5 min and the TOF was 190.98 min−1. After repeated for 5 times, the yield was maintained at 84.59%. The prepared Pd/LDH-OH nanocatalyst and the catalytic system are useful for Suzuki-Miyaura coupling reactions of N- and S-heterocyclic substrates. This provides an efficient and green approach for the preparation of supported nanopalladium catalysts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    13
    Citations
    NaN
    KQI
    []