Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators.

2020 
Abstract The glyoxalase system is a ubiquitous enzymatic network which plays important roles in biological life. It consists of glyoxalase 1 (GLO1), glyoxalase 2 (GLO2), and reduced glutathione (GSH), which perform an essential metabolic function in cells by detoxifying methylglyoxal (MG) and other endogenous harmful metabolites into non-toxic d -lactate. MG and MG-derived advanced glycation endproducts (AGEs) are associated with various diseases, such as diabetes, cardiovascular disease, neurodegenerative disorders and cancer, and GLO1 is a key rate-limiting enzyme in the anti-glycation defense. The abnormal activity and expression of GLO1 in various diseases make this enzyme a promising target for drug design and development. This review focuses on the regulatory mechanism of GLO1 in diverse pathogenic conditions with a thorough discussion of GLO1 regulators since their discovery, including GLO1 activators and inhibitors. The different classes, chemical structure and structure-activity relationship are embraced. Moreover, assays for the discovery of small molecule regulators of the glyoxalase system are also introduced in this article. Compared with spectrophotometer-based assay, microplate-based assay is a more simple, rapid and quantitative high-throughput method. This review will be useful to design novel and potent GLO1 regulators and hopefully provide a convenient reference for researchers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    130
    References
    16
    Citations
    NaN
    KQI
    []