Study on the Cure Behavior of a Novel Photocurable Material Using UPLC-Q-TOF-MS

2020 
An UPLC-Q-TOF-MS method is developed for cure degree measurement and cure behavior analysis on a novel photocurable adhesive material which is composed of specially designed acrylate oligomers, acrylate monomers, photo-initiators and additives such as ultra-violet absorbent, antioxidant stabilizer, optical stabilizer, etc. The photocurable adhesive material, in both cured and uncured state, were separated by Ultra-Performance Liquid Chromatography (UPLC) and the low molecular weight components were detected and determined quantitatively by high resolution Quadrupole Time-Of-Flight mass spectrometry (Q-TOF-MS) under Atmosphere Pressure Chemical Ionization (APCI) mode. Cure behaviors of all photo-reactive components in the photocurable adhesive material such as acrylate monomers and photo-initiators were studied by quantitatively measuring the amount of each reactive components in different stages of curing. Both the conversion of each acrylate monomers and photo-initiators at different curing energy conditions were calculated and discussed. Nearly full cure was obtained at cure energy of 200 mJ/cm2 for 4-hydroxybutyl acrylate and acryloyl morphine, as well as the two bifunctional monomers, 1,6-hexandiol diacrylate and dimethylol tricyclodecane diacrylate. Only 42.7% and 85.0% conversion were achieved for benzyl acrylate and isobornyl acrylate, respectively while consumption of TPO, a photo-initiator, was 38.0% at this cure energy. The results showed that a minimum 2000 mJ/cm2 energy condition is needed to achieve full cure of all acrylate monomers and enough decomposition of photo-initiator. This study indicated that UPLC-Q-TOF-MS is an effective and precise analytical method for cure degree measurement and cure behavior analysis on the photocurable materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []