Mechanism of Efficient Proton Conduction in Diphosphoric Acid Elucidated via First-Principles Simulation and NMR.

2015 
Diphosphoric acid (H4P2O7) is the first condensation product of phosphoric acid (H3PO4), the compound with the highest intrinsic proton conductivity in the liquid state. It exists at higher temperature (T > 200 °C) and lower relative humidity (RH ≈ 0.01%) and shows significant ionic conductivity under these conditions. In this work, ab initio molecular dynamics simulations of a pure H4P2O7 model system and NMR spectroscopy on nominal H4P2O7 (which contains significant amounts of ortho- and triphosphoric acid in thermodynamic equilibrium) were performed to reveal the nature and underlying mechanisms of the ionic conductivity. The central oxygen of the molecule is found to be excluded from any hydrogen bonding, which has two interesting consequences: (i) compared to H3PO4, the acidity of H4P2O7 is severely increased, and (ii) the condensation reaction only leads to a minor decrease in hydrogen bond network frustration, which is thought to be one of the features enabling high proton conductivity. A topologic...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    17
    Citations
    NaN
    KQI
    []