Mechanism of VFB/VTH shift in Dysprosium incorporated HfO2 gate dielectric n-Type Metal-Oxide-Semiconductor devices

2011 
The authors discuss temperature-dependent dysprosium (Dy) diffusion and the diffusion-driven Dy-silicate formation process in Dy incorporated HfO2. The Dy-induced dipoles are closely related to the Dy-silicate formation at the high-k/SiO2 interfaces since the VFB shift in Dy2O3 is caused by the dipole and coincides with the Dy-silicate formation. Dipole formation is a thermally activated process, and more dipoles are formed at a higher temperature with a given Dy content. The Dy-silicate related bonding structure at the interface is associated with the strength of the Dy dipole moment and becomes dominant in controlling the VFB/VTH shift during the high temperature annealing in the Dy–Hf–O/SiO2 gate oxide system. Dy-induced dipole reduces the degradation of the electron mobility.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    3
    Citations
    NaN
    KQI
    []