Seismic soil–structure interaction in buildings on stiff clay with embedded basement stories

2013 
The increasingly popular performance-based design approach requires that soil-structure interaction (SSI) analysis become an integral part of the seismic evaluation. This is particularly important for structures with substantial embedment. The primary objectives of this study are twofold: (i) evaluate the SSI effects for buildings with a basement and (ii) evaluate the ability of two analytical methods to account for SSI effects in seismic design — an analytical solution for kinematic SSI and a nonlinear finite element model. Scaled model shaking table tests were performed on a model building with an embedded basement founded in a synthetic stiff clay deposit enclosed in a laminar soil container. The model structure used in this study comprised a simple single-degree-of-freedom structure with a modular box foundation designed to permit consideration of structures with different basement embedment depths. The experimental results showed that the ratio of effective period of the soil-structure system to that of the structure (T ˘ /T) decreased for the long-period structure and increased for the short-period structure, with increasing embedment. The results confirm the ability of the analytical techniques to predict with reasonable accuracy the SSI effects for buildings with embedded parts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    16
    Citations
    NaN
    KQI
    []