Numerical Investigation of Thermohydraulic Performance of Triple Concentric-Tube Heat Exchanger with Longitudinal Fins

2021 
In this work, a triple concentric-tube heat exchanger (TCTH) with or without the application of longitudinal fins is numerically studied concerning its thermohydraulic performance. The computational fluid dynamics (CFD) program, Ansys FLUENT was used to perform the simulations to study the heat transfer enhancement using three different types of hot fluids, i.e. Crude oil, engine oil, and light diesel oil. The validated numerical model was first employed to investigate the heat transfer performance of unfinned TCTHE. Then, longitudinal fins were modeled and investigated for comparative analyses of the thermohydraulic performances of both constructions. To predict the heat exchanger performance, key parameters such as heat flux and temperature field distribution were evaluated. Results revealed that modifying the heat exchanger with longitudinal fins on the tube surface dramatically improves its heat transfer rate. Therefore, this research is designed to keep in view further exploring the potential of longitudinal fins in obtaining an improved performance from these types of heat exchanger devices. The results showed that the crude oil fluid has high heat transfer rate than the other two fluids light diesel oil and engine oil. With the application of fins on the tubes’ surfaces, a significant heat transfer exchange among the fluids streams is observed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []