Broadcasting Directional Modulation Based on Random Frequency Diverse Array

2019 
Frequency diverse array- (FDA-) based directional modulation (DM) is a promising technique for physical layer security, due to its angle-range dependent transmit beampattern. However, the existing schemes are not suitable for the broadcasting scenario, where there are multiple legitimate users (LUs) to receive the confidential message. In this paper, we propose a novel random frequency diverse array- (RFDA-) based DM scheme to realize the point to multi-point broadcasting secure transmission in both angle and range dimension. In the first stage, the beamforming vector is designed to maximize the artificial noise (AN) power, while satisfying the power requirement of LUs for transmitting the confidential message simultaneously. In the second stage, the AN projection matrix is obtained by maximizing signal-to-interference-plus-noise ratio (SINR) at the LUs. The proposed scheme only broadcasts the confidential message to the locations of LUs while the other regions are covered by AN, which promotes the security of the wireless broadcasting system. Moreover, it is energy efficient since the power of each LU is under accurate control. Numerical simulations are presented to validate the performance of the proposed scheme.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    5
    Citations
    NaN
    KQI
    []