Experimental quantum secure network with digital signatures and encryption
2021
Cryptography promises confidentiality, integrity, authenticity and non-repudiation to support trillions of transactions every year in digital economy. Recently, some cryptosystems, such as one-way hash functions and public-key cryptosystems, have been broken by exploiting classical computing resources. One-time pad encryption combined with quantum key distribution can perfectly guarantee the confidentiality of communication, which has been demonstrated in various quantum communication networks. However, digital signature technique, traditionally constituted by hash algorithm and public-key encryption, is more extensively used as it ensures integrity, authenticity and non-repudiation of data. The efficient implementation of signing arbitrarily long messages with unconditional security is an intractable open problem. Here we propose unconditionally secure quantum digital signatures consisting of secret sharing, one-time universial$_{2}$ hash functions and one-time pad encryption. The new protocol promises to sign a document of arbitrary length with security bound of $3\times10^{-39}$ if using 256-bit key. Furthermore, we build an all-in-one quantum secure network integrating provably secure communication, digital signatures, secret sharing and conference key agreement. Our work paves the way for securing digital enconomy by taking advantage of quantum networks.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
45
References
0
Citations
NaN
KQI