A finite element formulation for dynamic parameter identification of robot manipulators

2006 
In this paper a finite element based approach is described for the automatic generation of models suitable for dynamic parameter identification. The method involves a nonlinear finite element formulation in which both links and joints are considered as specific finite elements [6, 7]. Since the identification procedure considers rigid-link robot models, the inertial properties of the link elements are described using a lumped mass formulation. The parameters to be identified are masses, first-order moments and inertial tensor components of the links. The equations of motion are written in a form which is linear in the dynamic parameters. This formulation is obtained by employing Jourdain’s principle of virtual power. The parameters are estimated using a linear least squares technique. Singular value decomposition of the regression matrix is used to find the minimum parameter set. Simulation results obtained from the 6 DOF PUMA 560 robot based on the estimated parameters show that the method yields accurate responses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    9
    Citations
    NaN
    KQI
    []