Dimensions of Phyllostomid Bat Diversity and Assemblage Composition in a Tropical Forest-Agricultural Landscape

2020 
Tropical rainforests are suffering rapid habitat loss with large extensions of land transformed into agriculture. We wanted to know whether the type of agricultural activity in forest-agricultural landscapes affects how species composition as well as taxonomic and functional dimensions of diversity respond. We worked in the Amazon forests of southeast Peru and used bats as model organisms. We sampled mosaics characterized by forest adjacent to papaya plantations or cattle pastures. At each sampling site we established a transect in each of the three different vegetation types: forest interior, forest edge and agricultural land. We found that vegetation type was a better predictor of species composition than the type of agricultural land present. Vegetation structure characteristics explained differences in bat species composition between forest interior and edge. Agricultural land type chosen was not irrelevant as we found higher estimated species richness in papaya than in pasture sites. Agricultural land type present in a site and vegetation type affected functional diversity, with both agricultural land types showing a lower number of functionally distinct species than forests. We found papaya plantation sites showed species more evenly dispersed in trait space, suggesting they do better at conserving functional diversity when compared to cattle pasture sites. We demonstrate that sites that harbor agricultural activities can maintain a considerable proportion of the expected bat diversity. We note that this region still has large tracts of intact forest adjacent to agricultural lands, which may explain their ability to maintain relatively high levels bat diversity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    103
    References
    1
    Citations
    NaN
    KQI
    []