Joint Subcarrier and Power Allocation in D2D Communications Underlaying Cellular Networks
2020
For the high density of users and accompanying network service requirements in the cellular system, Device-to-Device (D2D) communication is a promising technology to cope with the increasing wireless traffic demands by reusing spectrum resources. In practice, the wireless signal is easy to be eavesdropped in D2D communications underlaying cellular networks, hence, ensuring a secure communication for cellular user equipments (CUEs) is an urgent and meaningful problem. In this paper, we propose a joint subcarrier and power allocation scheme for maximizing the sum data rate of D2D pairs, meanwhile protecting the CUEs against eavesdropping. Specifically, in the proposed scheme, we first quantify the security performance with the secrecy data rate, and obtain the closed-form expression for the optimal power allocation of CUEs and D2D pairs by tightening the quality of service (QoS) and secrecy rate requirement constraints of CUEs. Based on the obtained power allocation solution, by searching the optimal mapping relationship between CUEs and D2D pairs, we develop a subcarrier assignment strategy with the Hungarian algorithm to solve it, which can further enhance the sum data rate of D2D pairs. Simulation results demonstrate that the proposed scheme can significantly yield better performance than other schemes.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
19
References
1
Citations
NaN
KQI