Residual stress and redox cycling of segmented-in-series solid oxide fuel cells

2011 
Abstract Residual stresses in the electrolytes of segmented-in-series solid oxide fuel cells (SIS-SOFCs) and anode-supported cells (ASCs) were estimated at room temperature by X-ray diffraction. In the SIS-SOFCs, the residual stresses in the electrolyte were smaller than in the ASCs and did not change significantly after redox cycling. For both designs, numerically calculated values of the residual stresses in the electrolyte were found to be comparable to the experimental results. Next, in order to simulate the reoxidation reaction, the anode was subjected to forced expansion, and the residual stresses were estimated at high temperatures. It was found that in the SIS-SOFC, the dimensional changes and residual stresses were smaller than those in the ASC. The high redox tolerance of the SIS-SOFC is considered to stem from the fact that the electrically insulated substrate prevents the expansion and deformation of the positive electrode–electrolyte–negative electrode structure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    15
    Citations
    NaN
    KQI
    []