Clathrate Adhesion Induced by Quasi-Liquid Layer.

2021 
The adhesive force of clathrates to surfaces is a century-old problem of pipeline blockage for the energy industry. Here, we provide new physical insight into the origin of this force by accounting for the existence of a quasi-liquid layer (QLL) on clathrate surfaces. To gain this insight, we measure the adhesive force between a tetrahydrofuran clathrate and a solid sphere. We detect a strong adhesion, which originates from a capillary bridge that is formed from a nanometer-thick QLL on the clathrate surface. The curvature of this capillary bridge is nanoscaled, causes a large negative Laplace pressure, and leads to a strong capillary attraction. The microscopic capillary bridge expands and consolidates over time. This dynamic behavior explains the time-dependent increase of measured capillary forces. The adhesive force decreases greatly upon increasing the roughness and the hydrophobicity of the sphere, which founds the fundamental basics for reducing clathrate adhesion by using surface coating.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    1
    Citations
    NaN
    KQI
    []