Predictive model of 2-cyclohexylthiophene for corrosion inhibition in mild steel using computational method

2014 
Corrosion inhibition activity of 2-cyclohexylthiophene (2CHT) for mild steel in acidic media was predicted using QSAR tool. The model used two descriptors namely; Moran autocorrelation of lag4 weighted by mass (MATS4M) which explained the linearity and branching of the compounds and largest eigen values n3 of burden matrix weighted by mass (SPMAX3-Bh(m)) describes the nature and size of the neighboring atom. The modeling results revealed the potential of the compounds as a good corrosion inhibitor with percentage inhibition efficiency (%IE) of 76.5%. Quantum chemical calculation using DFT with 6-311G++(d,p) basis was used to evaluate the performance of the predicted compound as corrosion inhibitor by quantum chemical parameters such as EHUMO, ELUMO, Energy gap (Egap), hardness (?), softness (S), dipole moment (µ), electronegativity (X), electron affinity (A), ionization energy (I) and total energy (TE). The results obtained from quantum chemical parameters were found to be consistent with predicted result.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []