Dissociation and physical properties of methyl iodide in external electric field

2018 
As a kind of toxic methylation reagent and disinfectant, methyl iodide (CH 3 I) is widely used. It is important to study the basic physical properties of methyl iodide and to use effective measures to degrade it. The ground states of methyl iodide in different electric fields from 0 to 0.04a.u.(atomic unit) are optimized using the B3LYP calculation with the LANL2DZ basis set. Optimized parameters, total energies, bond lengths, dipole moments, the highest occupied molecular orbital energies, the lowest unoccupied molecular orbital energies, energy gaps, infrared spectra, and dissociation potential energy surface (PES) are obtained. The obtained results show that when the external electric field gradually increases from 0 to 0.04a.u. along the molecular axis Z (the C-I bond direction), the total energy decreases while the dipole moment increases. The C-I and C-H bond lengths increase gradually. The energy gap first increases and then decreases with the external electric field. Further studies show that when the external electric field increases from 0 to 0.04 a.u., the dissociation PES along the C-I bond becomes unbound with the potential energy barrier disappearing. The external electric field of 0.04 a.u. is sufficient to induce the degradation of methyl iodide with the C-I bond breaking. This work provides an important support for the degradation of methyl iodide in the external electric field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []