Serrated plastic flow behavior and microstructure in a Zr-based bulk metallic glass processed by surface mechanical attrition treatment

2017 
The serrated plastic flow, microstructure and residual stress of a Zr55 Cu30 Ni5 Al10 bulk metallic glass (BMG) undergone surface mechanical attrition treatment (SMAT) have been investigated by a combination of compression tests with scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and the incremental hole-drilling strain-gage method. It is found that SMAT leads to various microstructural modifications and residual stress distribution in the surface layers of the Zr-based BMG due to the mechanically-induced nanocrystallization and generation of shear bands. As a result, the BMG alloy exhibits a remarkable work-hardening like behavior and significant increase of plastic strain from less than 1% to 15%, and its plastic deformation dynamics yields a power-law distribution of shear avalanches. Based upon the analysis of the experimental results, it is indicated that this can be connected to the SMAT-induced microstructural modifications and the resulting residual compressive stress in the Zr-based BMG.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    9
    Citations
    NaN
    KQI
    []