Structural and optical properties of GaAsSb QW heterostructures grown by laser deposition

2015 
The possibility of using the laser deposition method to grow crystalline light-emitting structures with GaAsSb/GaAs quantum wells (QWs) is experimentally demonstrated for the first time. The growth temperature of the GaAs1 − x Sb x layers is varied within the range 450–550°C; according to X-ray diffraction analyses, the content of antimony reaches x Sb ≈ 0.37 at a growth temperature of 450°C. Low-temperature (4 K) photoluminescence spectroscopy demonstrates the presence of a peak associated with the GaAsSb/GaAs QW at around 1.3 μm at the minimum laser-light pumping level. The optimal growth temperature T g = 500°C and arsine flow rate P A = 2.2 × 10−8 mol/s at which the best emission properties of QWs with x Sb ∼ 0.17–0.25 are observed at temperatures of 77 and 300 K are determined. It is shown that GaAsSb/GaAs QWs with similar parameters (width and composition) grown by laser deposition at 500°C and metal-organic vapor-phase epitaxy at 580°C have comparable optical quality.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    1
    Citations
    NaN
    KQI
    []