Influence of Electric Poling on Fracture Toughness of Ferroelectric-Ferroelastic PZT Ceramics

1995 
Nearly fully dense PZT samples both with tetragonal and with morphotropic phase boundary compositions were prepared by the conventional powder processing and sintering. A micro-indentation technique was used to evaluate the dependence of fracture toughness on remanent polarization, crack length and the direction of crack propagation. The result shows that the toughness increases with the remanent polarization along the poling direction and decreases in the transverse direction. The dependence of toughness on the remanent polarization is neither symmetric nor linear but rather shown to be saturated quickly with the increase in remanent polariztion. R-curve behaviors are observed in both poled and unpoled samples. Sequential SEM and XRD studies on annealed, poled, ground, fractured and etched samples show that domain switching is evident as a viable toughening mechanism but might depend upon the rate of crack propagation. Grain bridging is also observed as one of the active toughening mechanisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []