Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress

2013 
Synthetic acid tolerance, especially during active cell growth, is a desirable phenotype for many biotechnological applications. Natively, acid resistance in Escherichia coli is largely a stationary-phase phenotype attributable to mechanisms mostly under the control of the stationary-phase sigma factor RpoS. We show that simultaneous overexpression of noncoding small RNAs (sRNAs), DsrA, RprA and ArcZ, which are translational RpoS activators, increased acid tolerance (based on a low-pH survival assay) supra-additively up to 8500-fold during active cell growth, and provided protection against carboxylic acid and oxidative stress. Overexpression of rpoS without its regulatory 5′-UTR resulted in inferior acid tolerance. The supra-additive effect of overexpressing the three sRNAs results from the impact their expression has on RpoS-protein levels, and the beneficial perturbation of the interconnected RpoS and H-NS networks, thus leading to superior tolerance during active growth. Unlike the overexpression of proteins, overexpression of sRNAs imposes hardly any metabolic burden on cells, and constitutes a more effective strain engineering strategy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    77
    Citations
    NaN
    KQI
    []