Electrochemical signal amplification for immunosensor based on 3D interdigitated array electrodes.

2014 
We devised an electrochemical redox cycling based on three-dimensional interdigitated array (3D IDA) electrodes for signal amplification to enhance the sensitivity of chip-based immunosensors. The 3D IDA consists of two closely spaced parallel indium tin oxide (ITO) electrodes that are positioned not only on the bottom but also the ceiling, facing each other along a microfluidic channel. We investigated the signal intensities from various geometric configurations: Open-2D IDA, Closed-2D IDA, and 3D IDA through electrochemical experiments and finite-element simulations. The 3D IDA among the four different systems exhibited the greatest signal amplification resulting from efficient redox cycling of electroactive species confined in the microchannel so that the faradaic current was augmented by a factor of ∼100. We exploited the enhanced sensitivity of the 3D IDA to build up a chronocoulometric immunosensing platform based on the sandwich enzyme-linked immunosorbent assay (ELISA) protocol. The mouse IgGs on ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    24
    Citations
    NaN
    KQI
    []