Jet instability over smooth, corrugated and realistic bathymetry

2019 
AbstractThe stability of a horizontally- and vertically-sheared surface jet is examined, with a focus on the vertical structure of the resultant eddies. Over a flat bottom, the instability is mixed baroclinic/barotropic, producing strong eddies at depth which are characteristically shifted downstream relative to the surface eddies. Baroclinic instability is suppressed over a large slope for retrograde jets (with a flow anti-parallel to topographic wave propagation), and to a lesser extent for prograde jets (with flow parallel to topographic wave propagation), as seen previously. In such cases, barotropic (lateral) instability dominates if the jet is sufficiently narrow. This yields surface eddies whose size is independent of the slope but proportional to the jet width. Deep eddies still form, forced by interfacial motion associated with the surface eddies, but they are weaker than under baroclinic instability and are vertically aligned with the surface eddies. A sinusoidal ridge acts similarly, suppressin...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    89
    References
    12
    Citations
    NaN
    KQI
    []