Effects of an antimitotic drug on mechanical behaviours of the cytoskeleton in distinct grades of colon cancer cells

2015 
Abstract Biomechanical behaviours of cells change during cancer progression due to alterations in the main cytoskeletal proteins. Microtubules play a vital role in mitosis and in supporting the integrity of the cell due to their ability to withstand high compressive loads. Accordingly, microtubule-targeting agents (MTAs) have become one of the most promising classes of drugs in cancer therapy. This study evaluated changes in visco-elastic parameters induced by an appropriate concentration of an antimitotic drug in two different grades of colon cancer cells. Actin microfilaments and microtubules contents in the cells were evaluated by Western blot analysis and fluorescence intensity calculation. Micropipette aspiration experiments showed that the MTA had distinct mechanical effects on different cell lines. The more aggressive the cells, the greater the reduction in elasticity and viscosity. Invasive cells had a higher initial instantaneous Young’s modulus than primary cells, but this reduced to approximately one half of the values for primary cells after 48 h of drug treatment. A considerable association was seen between the changes in mechanical properties and the microtubule to F-actin microfilament content ratio, which decreased with MTA treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    19
    Citations
    NaN
    KQI
    []