Laser-Raman microprobe identification of inclusions in capsules associated with silicone gel breast implants.

1999 
: Raman spectroscopy (the analysis of scattered photons after excitation with a monochromatic light source) provides a nondestructive method for identifying organic and inorganic materials on the basis of the molecule's characteristic spectrum of vibrational frequencies. Although the technique has been predominantly applied in sciences other than pathology, the recent advent of high-quality microscope optics coupled to optical Raman spectrometers (a variation known as a Raman microprobe) rendered this technique amenable to applications in human pathology. In the Raman microprobe, a laser beam is focused on a spot approximately 1 microm in diameter on the surface of the sample, e.g., tissue, and the scattered light is collected and analyzed. In this investigation, we used the Raman microprobe for the identification of foreign materials in breast implant capsular tissues. The characteristic silicone group frequencies associated with the silicon-oxygen stretch, the silicone-carbon stretch, the silicon-methyl and the methyl carbon-hydrogen stretch frequencies were used to identify polydimethylsiloxane and to define chemical differences among the various other implant-related inclusions. All of the inclusions were positively identified in a series of 44 capsules from silicone gel-filled implants: polydimethylsiloxane was found in 44 of 44 capsules surrounding silicone gel-filled implants; polyurethane was seen in 4 of 4 capsules around polyurethane foam-coated gel-filled implants; 4 of 4 capsules enveloping Dacron patch gel-filled implants revealed Dacron; and talc was identified in 8 of these 44 capsules. Raman microspectroscopy provides a rapid, accurate, and sensitive method for identifying inclusions associated with silicone and other implant materials in tissue.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    10
    Citations
    NaN
    KQI
    []