Seismic Resolution Enhancement by Frequency-Dependent Wavelet Scaling

2018 
When seismic waves propagate through the earth, their high-frequency energy is absorbed by subsurface viscoelastic media. Seismic wavelet appears to be stretched out, as it is dominated by low-frequency components. In order to enhance seismic resolution, we propose here a wavelet compression method that utilizes the scale characteristic in the Fourier transform. The novelty of the scheme is a frequency-dependent scaling that extends the amplitude spectrum to both high- and low-frequency axes simultaneously. This is for the first time to make this frequency-dependent proposal, instead of a constant scaling scheme in the classic Fourier theory. It compresses seismic wavelet in the time domain and also simplifies the wavelet form effectively. This frequency-dependent scaling scheme leads to a transferring filter that is applicable to seismic field data. It results in an improvement in data resolution and in the ability of thin-layer identification, which will facilitate further seismic inversion and reservoir characterization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    5
    Citations
    NaN
    KQI
    []