Mass and heat balance of a lake ice cover in the Central Asian arid climate zone

2020 
To improve the understanding of the seasonal evolution of the mass and heat budget of ice-covered lakes in the cold and arid climate zone, in-situ observations were collected during two winters (2016–2017 and 2017–2018) in Lake Wuliangsuhai, Inner Mongolia, China. The mean snow thickness was 5.2 and 1.6 cm in these winters, due to low winter precipitation. The mean ice thickness was 50.9 and 36.1 cm, and the ice growth rate was 3.6 and 2.1 mm day−1 at the lower boundary of ice. Analyses of mass and heat balance data from two winters revealed that the surface heat budget was governed by solar radiation and terrestrial radiation. The net heat flux loss of the ice was 9–22 W m−2, affected by the snow and ice thickness. Compared to boreal lakes, Lake Wuliangsuhai received more solar radiation and heat flux from the water. The ice temperature had a strong diurnal variation, which was produced by the diurnal cycles of solar radiation, and air and water temperatures. These results expand our knowledge of the evolution of mass and heat balance in temperate lakes of mid-latitude arid areas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    2
    Citations
    NaN
    KQI
    []