lncRNA NONHSAT030515 Promotes the Chondrogenic Differentiation of Human Adipose-derived Stem Cells via Regulating the miR-490-5p/BMPR2 Axis

2021 
BACKGROUND Chondrogenic differentiation of human adipose-derived stem cells (hADSCs) is important for cartilage generation and degradation. LncRNAs play an essential role in stem cell differentiation. However, the role and mechanism of lncRNA in hADSCs remain unclear. Our previous study showed that miR-490-5p was downregulated during chondrogenic differentiation of hADSCs. In this study, we investigated the effect and mechanism of lncRNA NONHSAT030515 interacting with miR-490-5p on chondrogenic differentiation of hADSCs. METHODS Alcian blue staining was used to assess the deposition of chondromatrix proteins following chondrogenic differentiation of human adipose stem cells. Immunohistochemistry was used to evaluate the expression of collagenII. TargetScan, miRTarBase and miRDB database analyses were applied to find the miRNA and target genes of lncRNA NONHSAT030515. A dual luciferase experiment was conducted to identify the direct target of NONHSAT030515. pcDNA3.1- NONHSAT030515 transfection and sh- NONHSAT030515 treatment were conducted to verify the role of lncRNA NONHSAT030515 in chondrogenic differentiation. The levels of Aggrecan, SOX9 and COL2A1 were analyzed by qRT-PCR and Western blot assay. RESULTS Alcian blue staining, immunocytochemical, qRT-PCR, and Western blot have determined that lncRNA NONHSAT030515 can promote the chondrogenic differentiation of hADSCs. MiR-490- 5p was the direct target of NONHSAT030515, while BMPR2 was the target gene. This result was confirmed by luciferase reporter assay. Up-regulation of NONHSAT030515 promoted BMPR2 protein expression and promoted chondrogenic differentiation, whereas down-regulation of NONHSAT030515 caused completely opposite results. CONCLUSION LncRNA NONHSAT030515 promotes the chondrogenic differentiation of hADSCs through increasing BMPR2 expression by regulating miR-490- 5p.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []