Numerical simulation of nonlinear acoustic streaming in a resonator using gas-kinetic scheme

2012 
The acoustic streaming motion in a compressible air-filled two-dimensional cylindrical resonator driving by a piston is simulated by using the gas-kinetic scheme, and the effects of acoustic field intensity on the formation process of flow structure as well as streaming pattern are investigated numerically for the practical applications of high-intensity acoustic devices. Therefore, five cases with different excitation amplitudes are considered in simulation ranging from the linear to highly nonlinear regions. The validation of the developed model is verified by comparing the numerical results of streaming velocities with the theoretical ones for the linear case. The wave form of pressure and velocity and the transient flow field structure as well as the resulting streaming pattern are found to be strongly correlated to the excitation amplitude. Be observed for the linear case is a sine wave and a uniform of quasi-one-dimensional flow field as well as classical Rayleigh streaming. Periodic shock waves and...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    5
    Citations
    NaN
    KQI
    []