Initiation of DNA replication in Bacillus subtilis. V. Role of DNA gyrase and superhelical structure in initiation.

1981 
When spores of a thymine-requiring mutant of Bacillus subtilis were germinated in a medium lacking thymine, an initiation potential (an ability to initiate and complete one round of replication in the presence of thymine and in the absence of protein and RNA synthesis) was formed for both chromosomal and plasmid replication. The effect of two inhibitors of DNA gyrase, novobiocin (Nov) and nalidixic acid (Nal), on the initiation potential formed during germination for chromosomal and plasmid replication was examined. Nov and Nal inhibited formation of the initiation potential completely if the drug was added at the onset of germination. In contrast, initiation of chromosomal and plasmid replication occurred in the presence of DNA gyrase inhibitors when the drug was added after the initiation potential had been fully formed. However, chromosomal replication initiated in the presence of the inhibitors ceased after a fragment of approximately 15 MD (15×106 daltons) had been replicated, and plasmid replication was limited to one round of replication in approximately half of the plasmid molecules present in the spores. Furthermore the initiation potential for both chromosomal and plasmid replication though established was destroyed gradually but steadily by prolonged incubation with Nov in the absence of thymine. In addition, relaxation of the superhelical structure of plasmid DNA during incubation with Nov was observed in vivo. This relaxation was blocked by ethidium bromide, which dissociated the S-complex. On the other hand, incubation with Nal did not reduce the initiation potential nor did it change the superhelicity of the plasmid DNA in vivo. This is consistent with the known effect of gyrase inhibitors on the enzymatic activity of DNA gyrase. These results clearly demonstrate that both the action of DNA gyrase and the superhelical structure of the DNA are essential for the initiation of chromosomal and plasmid replication. The specific chromosome organization essential for initiation and elongation and the role of DNA gyrase are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    27
    Citations
    NaN
    KQI
    []