Numerical and experimental analysis of rotating wheel in contact with the ground

2018 
Purpose This paper aims to provide the results of investigations concerning an influence of the tyre with longitudinal grooves on the car body aerodynamics. It is considered as an important aspect affecting the vehicle aerodynamic drag. Design/methodology/approach To investigate a contribution of grooved tyres to the overall vehicle drag, three wind tunnel experimental campaigns were performed (two by Peugeot Societe Anonyme Peugeot Citroen, one at the Lodz University of Technology). In parallel, computational fluid dynamics (CFD) simulations were conducted with the ANSYS CFX software to enable formulation of wider conclusions. Findings The research shows that optimised tread patterns can be derived on a single tyre via a CFD study in combination with a controlled experiment to deliver designs actively lowering the overall vehicle aerodynamic drag. Practical implications A reduction in the aerodynamic drag is one of ways to decrease vehicle fuel consumption. Alternatively, it can be translated into an increase in the maximum travel velocity and the maximum distance driven (key factor in electric vehicles), as well as in a reduction of CO2 emissions. Finally, it can improve the vehicle driving and steering stability. Originality/value The tyre tread pattern analysis on isolated wheels provides an opportunity to cut costs of R&D and could be a step towards isolating aerodynamic properties of tyres, irrespective of the car body on which they are applied.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    2
    Citations
    NaN
    KQI
    []