Parallel reinforcement learning for weighted multi-criteria model with adaptive margin

2009 
Reinforcement learning (RL) for a linear family of tasks is described in this paper. The key of our discussion is nonlinearity of the optimal solution even if the task family is linear; we cannot obtain the optimal policy using a naive approach. Although an algorithm exists for calculating the equivalent result to Q-learning for each task simultaneously, it presents the problem of explosion of set sizes. We therefore introduce adaptive margins to overcome this difficulty.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    10
    Citations
    NaN
    KQI
    []