Identification of human immune cell subtypes most responsive to IL-1β-induced inflammatory signaling using mass cytometry

2021 
IL-1β is a key mediator of the cytokine storm linked to high morbidity and mortality from COVID-19, and IL-1β blockade with anakinra and canakinumab during COVID-19 infection has entered clinical trials. Using mass cytometry of human peripheral blood mononuclear cells, we identified effector memory CD4+ T cells and CD4−CD8low/−CD161+ T cells, specifically those positive for the chemokine receptor CCR6, as the circulating immune subtypes with the greatest response to IL-1β. This response manifested as increased phosphorylation and, thus, activation of the proinflammatory transcription factor NF-κB and was also seen in other subsets, including CD11c+ myeloid dendritic cells, classical monocytes, two subsets of natural killer cells (CD16−CD56brightCD161− and CD16−CD56dimCD161+), and lineage− (Lin−) cells expressing CD161 and CD25. IL-1β also induced a rapid but less robust increase in the phosphorylation of the kinase p38 as compared to that of NF-κB in most of these immune cell subsets. Prolonged IL-1β stimulation increased the phosphorylation of the transcription factor STAT3 and to a lesser extent that of STAT1 and STAT5 across various immune cell types. IL-1β–induced production of IL-6 likely led to the activation of STAT1 and STAT3 at later time points. Interindividual heterogeneity and inhibition of STAT activation by anakinra raise the possibility that assays measuring NF-κB phosphorylation in response to IL-1β in CCR6+ T cell subtypes could identify those patients at higher risk of cytokine storm and most likely to benefit from IL-1β–neutralizing therapies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    94
    References
    1
    Citations
    NaN
    KQI
    []