Preferential Elimination of Ba2+ through Irreversible Biogenic Manganese Oxide Sequestration

2021 
Biogenic manganese oxides (BMOs) formed in a culture of the Mn(II)-oxidizing fungus Acremonium strictum strain KR21-2 are known to retain enzymatic Mn(II) oxidation activity. Consequently, these are increasingly attracting attention as a substrate for eliminating toxic elements from contaminated wastewaters. In this study, we examined the Ba2+ sequestration potential of enzymatically active BMOs with and without exogenous Mn2+. The BMOs readily oxidized exogenous Mn2+ to produce another BMO phase, and subsequently sequestered Ba2+ at a pH of 7.0, with irreversible Ba2+ sequestration as the dominant pathway. Extended X-ray absorption fine structure spectroscopy and X-ray diffraction analyses demonstrated alteration from turbostratic to tightly stacked birnessite through possible Ba2+ incorporation into the interlayer. The irreversible sequestration of Sr2+, Ca2+, and Mg2+ was insignificant, and the turbostratic birnessite structure was preserved. Results from competitive sequestration experiments revealed that the BMOs favored Ba2+ over Sr2+, Ca2+, and Mg2+. These results explain the preferential accumulation of Ba2+ in natural Mn oxide phases produced by microbes under circumneutral environmental conditions. These findings highlight the potential for applying enzymatically active BMOs for eliminating Ba2+ from contaminated wastewaters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    1
    Citations
    NaN
    KQI
    []